



# **CSITC** Task Force Contributions

Axel Drieling Faserinstitut Bremen e.V. (Bremen Fibre Institute)

> Meeting of the CSITC Task Force, Washington, D.C., USA, May12, 2011

- 1 Round Trial results
  - 1.1 RTs 2010 / 2011-1
  - 1.2 New evaluations
- 2 Treatment of biased results
- 4 Development of RTCs in Africa
- 6 Best Practices Guide

1





# **Review of Round Trial Results**

→ Current: 2010-4 and 2011-1
→ Compared to Summary since 2007
→ Specific topics





- The six properties for instrument evaluation are
  - Mic, Strength
  - Length, Uniformity
  - Color Rd, Color +b
- Other parameters are included, but not taken for evaluation
  - SFI, Maturity (since 2009)
  - New: Trash Count, Trash Area (since 2010)

All results can be found and downloaded on/from <u>www.csitc.org</u>









Currently 111 laboratories are registered for at least 1 RT in 2011



# Round Trial Review Evaluation Combined Properties







# Round Trial Review Evaluation Combined Properties







# Round Trial Review Evaluations of the Properties



|                          | Number of                    | Participants          | Median Evaluations              |                          |                        |                      |                          |                        |                        |  |  |
|--------------------------|------------------------------|-----------------------|---------------------------------|--------------------------|------------------------|----------------------|--------------------------|------------------------|------------------------|--|--|
|                          | Participating<br>Instruments | Participating<br>Labs | Evaluation<br>Combined<br>Prop. | Evaluation<br>Micronaire | Evaluation<br>Strength | Evaluation<br>Length | Evaluation<br>Uniformity | Evaluation<br>Color Rd | Evaluation<br>Color +b |  |  |
| Average<br>since<br>2007 | 88.2                         | 63.1                  | 0.51                            | 0.51                     | 0.48                   | 0.42                 | 0.37                     | 0.51                   | 0.49                   |  |  |
| 2010-4                   | 127                          | 80                    | 0.60                            | 0.47                     | 0.45                   | 0.46                 | 0.49                     | 0.71                   | 0.74                   |  |  |
| 2011-1                   | 115                          | 76                    | 0.50                            | 0.48                     | 0.47                   | 0.40                 | 0.34                     | 0.45                   | 0.43                   |  |  |



Going along with one bale over the years



| Bale I D | USDA Up | land - same | bale    |                         |         |         |         |
|----------|---------|-------------|---------|-------------------------|---------|---------|---------|
|          | Mic     | Mic         | Str     | Len                     | Unf     | Rd      | +b      |
|          |         | SD interlab |         |                         |         |         |         |
| RT       | Average | (1)         | Average | Average                 | Average | Average | Average |
|          |         |             |         | $\langle \cdot \rangle$ |         |         |         |
| 2007-3   | 3.85    | 0.09        | 33.24   | 1.177                   | 83.66   | 75.91   | 11.11   |
| 2008-1   | 3.88    | 0.08        | 33.25   | 1.176                   | 83.70   | 76.05   | 11.11   |
| 2009-2   | 3.87    | 0.07        | 33.22   | 1.173                   | 83.62   | 76.01   | 11.37   |
| 2009-4   | 3.87    | 0.10        | 33.46   | 1.178                   | 83.78   | 75.47   | 11.42   |



# Interlab Result Variation SD(property) based on 1 test







# Interlab Result Variation SD(property) based on 1 test







Comparison to USDA Est. Results Micronaire





- Up to 2010-3 unsatisfying: biased results compared to USDA established.
- 2010-4: New Calib. Material given to all labs: the difference dissapeared fully.
- 2011-1: Unfortunately the difference appeared again
   → obviously the calibration material was only taken in RT 2010-4
- What can we learn from this?



Comparison to USDA Est. Results



Average Difference Micronaire (RT – USDA) - 0.048 units  $\rightarrow$  It will be possible to solve this difference Average Difference Strength (RT – USDA): -0.05 gf/tex  $\rightarrow$  Ideally fitting Average Difference Length (RT – USDA): 0.002" (=0.05mm)  $\rightarrow$  Ideally fitting Average Difference L-Unif (Rt – USDA): 0.15 units  $\rightarrow$  Well fitting





















- All information available
  - CSITC Round Trial results
  - CSITC Task Force
  - CSITC Project
  - Instrument testing
  - Access to RT database
- RT participating Laboratories → database
  - Upload of data
  - All lab/instrument specific Round Trial reports
- Password for confidential data





# **New Evaluation Systems**





- Idea for an additional evaluation (not meant to replace the existing one):
  - Compare the results of each instrument for each cotton based on suitable test result limits:
    - Looks at in/out criteria for results instead how far results are away from the reference result
    - The evaluation is more close to industry procedures
  - Achieve expressive/meaningful evaluation result instead of an Overall Evaluation result ("0.57"), which is difficult to understand
  - Basis for applying commercial trade limits
  - The evaluation shows high selectivity for reproducibility of different instruments





- Procedure
  - Compare absolute difference for each cotton and property with allowed limits (in/out response)
  - For each property: Count number of cottons outside limits
  - Finally: Is for one instrument any property having cottons with test results outside the limits?
  - Possible addition: does the share of test results outside the limits exceed any allowed tolerance?
  - Next step of addition: combine the evaluations of 4 Round Trials in one year





|     | <u>Rt 2010</u>          |                |      | Share    | 0            |                   |          |            |            |            |
|-----|-------------------------|----------------|------|----------|--------------|-------------------|----------|------------|------------|------------|
|     | <u>4</u>                |                |      | Limits   | 0.2          | 2                 | 0.03     | 2          | 1000000    | 1000000    |
| Ste | ep 1                    | Lab/In<br>Code | str. | Sample   | Micronaire 💌 | Strength <b>T</b> | Length 🔽 | Uniformity | Color Rd 🔽 | Color +b 💌 |
|     | <b>Reference Values</b> |                |      | Cotton 1 | 2.539        | 22.156            | 0.9714   | 77.669     | 78.371     | 11.883     |
|     | Reference Values        | 1              | /    | Cotton 2 | 4.211        | 32.854            | 1.2217   | 83.467     | 75.840     | 12.337     |
|     | Reference Values        | 1              |      | Cotton 3 | 2.550        | 23.477            | 1.0364   | 79.270     | 73.549     | 14.609     |
|     | Reference Values        | 1              |      | Cotton 4 | 5.013        | 29.334            | 1.0788   | 83.360     | 72.935     | 10.528     |
|     | Reference Values        | 1              |      | Cotton 5 | 3.630        | 27.279            | 1.1110   | 81.940     | 75.836     | 10.837     |
|     |                         | C1             |      | Cotton 1 | 2.577        | 20.417            | 0.9730   | 78.197     | 78.757     | 11.827     |
|     |                         | C1             |      | Cotton 2 | 4.183        | 32.350            | 1.2127   | 83.297     | 76.317     | 12.380     |
|     |                         | C1             |      | Cotton 3 | 2.563        | 22.043            | 1.0173   | 78.613     | 73.653     | 14.750     |
|     |                         | C1             |      | Cotton 4 | 4.990        | 29.310            | 1.0761   | 83.010     | 72.970     | 10.400     |
|     |                         | C1             |      | Cotton 5 | 3.633        | 26.220            | 1.1064   | 81.440     | 75.967     | 10.747     |
|     |                         | G1             |      | Cotton 1 | 2.617        | 24.717            | 0.9997   | 77.803     | 78.003     | 11.270     |
|     |                         | G1             | 1    | Cotton 2 | 4.257        | 30.020            | 1.2037   | 82.957     | 75.727     | 10.777     |
|     |                         | G1             |      | Cotton 3 | 2.590        | 24.963            | 0.9947   | 78.183     | 73.480     | 13.973     |
|     |                         | G1             |      | Cotton 4 | 5.033        | 29.200            | 1.0853   | 82.350     | 73.930     | 9.940      |
|     |                         | G1             |      | Cotton 5 | 3.720        | 28.610            | 1.1203   | 82.497     | 76.660     | 10.037     |





|        | <u>Rt 2010</u>   |            | Share    |          |          |           |         |         |         |
|--------|------------------|------------|----------|----------|----------|-----------|---------|---------|---------|
|        | <u>4</u>         |            | Limits   | 0.2      | 2        | 0.03      | 2       | 1000000 | 1000000 |
| Step 2 |                  | Lab/Instr. | Sample   | Mic Diff | Str Diff | UHML Diff | LU Diff | Rd Diff | +b Diff |
|        | Reference Values | / /        | Cotton 1 |          |          |           |         |         |         |
|        | Reference Values | 6          | Cotton 2 |          |          |           |         |         |         |
|        | Reference Values |            | Cotton 3 |          |          |           |         |         |         |
|        | Reference Values |            | Cotton 4 |          |          |           |         |         |         |
|        | Reference Values | 1          | Cotton 5 |          |          |           |         |         |         |
|        |                  | C1         | Cotton 1 | 0.038    | -1.740   | 0.002     | 0.527   | 0.386   | -0.056  |
|        |                  | C1         | Cotton 2 | -0.028   | -0.504   | -0.009    | -0.170  | 0.476   | 0.043   |
|        |                  | C1         | Cotton 3 | 0.014    | -1.434   | -0.019    | -0.656  | 0.104   | 0.141   |
|        |                  | C1         | Cotton 4 | -0.023   | -0.024   | -0.003    | -0.350  | 0.035   | -0.128  |
|        |                  | C1         | Cotton 5 | no eval  | no eval  | no eval   | no eval | no eval | no eval |
|        |                  | G1         | Cotton 1 | 0.078    | 2 560    | 0.028     | 0 134   | -0 368  | -0 613  |
|        |                  | G1         | Cotton 2 | 0.046    | -2.834   | -0.018    | -0.510  | -0.114  | -1.561  |
|        |                  | G1         | Cotton 3 | 0.040    | 1.486    | -0.042    | -1.086  | -0.069  | -0.636  |
|        |                  | G1         | Cotton 4 | 0.020    | -0.134   | 0.007     | -1.010  | 0.995   | -0.588  |
|        |                  | G1         | Cotton 5 | no eval  | no eval  | no eval   | no eval | no eval | no eval |





# Step 3

| <u>Rt 2010</u>          |               |       | Share    | 9   |                      |                     |                            |                     |                     |                     |
|-------------------------|---------------|-------|----------|-----|----------------------|---------------------|----------------------------|---------------------|---------------------|---------------------|
| <u>4</u>                |               |       | Limit    | S   | 0.2                  | 2                   | 0.03                       | 2                   | 1000000             | 1000000             |
| T                       | Lab/I<br>Code | nstr. | Sample   |     | Mic out<br>of limits | Str out<br>of limit | UHML<br>out<br>s of limits | LU out<br>of limits | Rd out<br>of limits | +b out<br>of limits |
| <b>Reference Values</b> |               | 1     | Cotton 1 |     | 0.2                  | 2                   | 0.03                       | 2                   | 1000000             | 1000000             |
| Reference Values        |               |       | Cotton 2 | 1   | X                    |                     |                            |                     |                     |                     |
| Reference Values        |               |       | Cotton 3 |     |                      |                     | -                          |                     |                     |                     |
| Reference Values        | 1             |       | Cotton 4 |     |                      |                     |                            |                     |                     |                     |
| Reference Values        | 1             |       | Cotton 5 |     |                      |                     |                            |                     |                     |                     |
|                         | C1            |       | Cotton 1 |     | 0                    | 0                   | 0                          | 0                   | 0                   | 0                   |
|                         | C1            |       | Cotton 2 |     | 0                    | 0                   | 0                          | 0                   | 0                   | 0                   |
|                         | C1            |       | Cotton 3 |     | 0                    | 0                   | 0                          | 0                   | 0                   | 0                   |
| $\langle \cdot \rangle$ | C1            |       | Cotton 4 |     | 0                    | 0                   | 0                          | 0                   | 0                   | 0                   |
|                         | C1            |       | Cotton 5 |     | no eval              | no eva              | no eval                    | no eval             | no eval             | no eval             |
|                         | 1             |       |          |     |                      | 12                  |                            |                     |                     |                     |
|                         | G1            | 1     | Cotton 1 | /   | 0                    | 1                   | 0                          | 0                   | 0                   | 0                   |
|                         | G1            | 1     | Cotton 2 | - J | 0                    | 1                   | 0                          | 0                   | 0                   | 0                   |
|                         | G1            | 1     | Cotton 3 |     | 0                    | 0                   | 1                          | 0                   | 0                   | 0                   |
|                         | G1            |       | Cotton 4 | 1   | 0                    | 0                   | 0                          | 0                   | 0                   | 0                   |
|                         | G1            |       | Cotton 5 |     | no eval              | no eva              | no eval                    | no eval             | no eval             | no eval             |





#### **Rt 2010** Share <u>4</u> Limits Mic UHML LU Rd +b Str share share share share Share share Lab/Instr. out of out out out out out Sample Code / **T** limits of limits of limits of limits of limits Reference Values Cotton 1 **Reference Values** Cotton 2 Reference Values Cotton 3 Reference Values Cotton 4 Reference Values Cotton 5 C1 Cotton 1 0 0 0 0 0 0 C1 Cotton 2 C1 Cotton 3 C1 Cotton 4 C1 Cotton 5 G1 0.5 0.25 Cotton 1 0 0 0 0 G1 Cotton 2 G1 Cotton 3 G1 Cotton 4 G1 Cotton 5

A. Drieling, CSITC, Washington 2011 - 05

# Step 4: End?





Step 5: Step 6:

| <u>Rt 2010</u>          |            |          | 0.2 | 2   | 0.03 | 2  | 1000000 | 1000000  |     |       |
|-------------------------|------------|----------|-----|-----|------|----|---------|----------|-----|-------|
| <u>4</u>                |            |          | 0   | 1   | 1    | 0  | 0       | 0        |     | 50.0% |
| End?                    | Lab/Instr. | Sample   | Mic | Str | UHML | LU | Rd      | +b<br>ok | Sum | Out   |
| Reference Values        |            | Cotton 1 | 0   | 0   | 0    | 0  | 0       | 0        | out | out   |
| Reference Values        | 1          | Cotton 2 |     |     |      |    |         |          |     |       |
| Reference Values        |            | Cotton 3 |     |     |      |    |         |          |     |       |
| <b>Reference Values</b> |            | Cotton 4 |     |     |      |    |         |          |     |       |
| Reference Values        |            | Cotton 5 |     |     |      |    |         |          |     |       |
|                         | C1         | Cotton 1 | 0   | 0   | 0    | 0  | 0       | 0        | 0   | 0     |
|                         |            | Cotton 2 |     |     |      |    |         |          |     |       |
|                         |            | Cotton 4 |     |     | 1    |    |         |          |     |       |
|                         | C1         | Cotton 5 |     |     |      |    |         |          |     |       |
|                         |            |          |     |     |      |    |         |          |     |       |
|                         | G1         | Cotton 1 | 0   | 1   | 1    | 0  | 0       | 0        | 2   | 1     |
|                         | G1         | Cotton 2 |     | 1   |      | 1  |         |          |     |       |
|                         | G1         | Cotton 3 | 1   | 1   |      |    |         |          |     |       |
|                         | G1         | Cotton 4 |     |     |      |    | _       |          |     |       |
|                         | G1         | Cotton 5 |     |     |      |    |         |          |     |       |



Exemplary results for 2011-1



|                 | Mic | Str | Len  | Unif | Rd  | +b |    |              |
|-----------------|-----|-----|------|------|-----|----|----|--------------|
| Allowed share   | 0   |     |      |      |     |    | al | l: 115 instr |
| Allowed limits  | 0.2 | 2   | 0.03 | 2    | 1.5 | 1  |    |              |
| No. Of labs out | 8   | 21  | 13   | 1    | 25  | 9  | То | tal 45.2%    |

|                 | Mic | Str | Len   | Unif | Rd | +b  |       |            |
|-----------------|-----|-----|-------|------|----|-----|-------|------------|
| Allowed share   | 0   |     |       |      |    |     | all:  | 115 instr. |
| Allowed limits  | 0.1 | 1   | 0.015 | 1    | 1  | 0.5 |       |            |
| No. Of labs out | 47  | 71  | 53    | 22   | 67 | 31  | Total | 93.0%      |

|                 | Mic | Str | Len  | Unif | Rd | +b  |      |            |
|-----------------|-----|-----|------|------|----|-----|------|------------|
| Allowed share   | 0   |     |      |      |    | -   | all: | 115 instr. |
| Allowed limits  | 0.3 | 3   | 0.04 | 2    | 2  | 1.5 |      |            |
| No. Of labs out | 0   | 6   | 6    | 1    | 14 | 2   | Tota | 17.4%      |





- For the newly developed evaluation it is essential to choose suitable limits for each characteristic.
- Ideally they should fit to commercial trade limits
- The evaluation shows to each laboratory directly if it delivers results inside possible commercial trade limits
- The precision of the instruments can be added by evaluating the single test results instead of the average of 30 test results (currently not done)





# Treatment of Biased Results: Bimodal Distributions in Color Results → Mainly for color Rd → Additionally for color +b



# Biased results: Bimodal Distrib. for Color Rd in RT 2010-4







## Less biased results: Color Rd in other RTs









- Consequences:
  - This effect is only dangerous in case that a large interrelated group of instruments shows similar behaviour (else we have single outliers in both directions, cancelling each other)
  - Interlaboratory average as the reference for evaluating labs is strongly influenced
    - $\rightarrow$  very dangerous, changes evaluation for all instruments
  - Interlaboratory variation is strongly increased
     → shows higher interlab SDs, else no consequence
  - The average laboratory evaluation for color is getting worse
     → shows worse evaluation distributions, else no consequence
  - Single instruments are getting bad evaluations
    - $\rightarrow$  adequate result for these instruments





- What to do:
  - Choose deviating instruments (how...)?
  - Delete deviating instruments from interlab average ?
  - Delete deviating instruments from interlab SD ?
  - Delete deviating instruments from the lab evaluation ??
  - Delete deviating instrument results from all calculations ??
  - Exclude deviating instruments from participation ???







- How to do:
  - Choosing the second maximum results from each sample not suitable (distributions are not distinct)
  - Choosing single instruments with "suspicious" results not suitable
  - Shifting to USDA Established results not possible (but master colorimeter)
  - Choosing "trustable laboratories" too subjective
  - Preferable way:
    - Compare results of at least 2 Round Trials with bimodal results on several cottons
    - Choosing "groups" of interrelated instruments: Same lab or same organization or intense cooperation or linked quality management or same instrument type





- Preferable way:
  - Start for Color Rd
  - Compare results of at least 2 finished Round Trials with bimodal results on several cottons
  - Examine all instruments in the second maximum of each cotton; find instruments with constantly wrong behaviour
  - Choosing "groups" of interrelated instruments
    - Same lab or same organization or intense cooperation or linked quality management or same instrument type
  - Agree choice between FIBRE and USDA (and ICAC)
  - Choice will be treated totally confidential
  - Inform laboratories in advance
  - Exclude these results from the interlab. average (reference)
  - No exclusion from calculations for variation and instrument evaluations
  - Exclude the same instruments from +b
  - Continue exclusion until results fit again A. Drieling, CSITC, Washington 2011 05





- Findings:
  - It was possible to choose a distinct group of instruments in the last 2 / 3 RTs
  - The same instruments resulted in a bias in color +b, too, although not creating a bimodal distribution
  - Exclusion of the chosen instruments results in suitable distributions
  - After excluding the chosen instruments, the interlaboratory average was much closer to a group of "trustable laboratories" (certainly subjective)
  - It will be possible to start this procedure for RT 2011-2 if necessary and agreed





# Development of the Regional Technical Centers in Africa



Africa: Participation in RTs



|                      | 2007                                                        | 2008                                                                          | 2009                                                                 | 2010                                                                                   | 2011                                                                                                       |
|----------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Labs                 | 8                                                           | 11                                                                            | 9                                                                    | 12                                                                                     | 14 registered                                                                                              |
| Instr.<br>(parallel) | 13                                                          | 16                                                                            | 12                                                                   | 16                                                                                     | ?                                                                                                          |
| Countries            | 6                                                           | 8                                                                             | 7                                                                    | 8                                                                                      | 10 registered                                                                                              |
| Countries            | Benin<br>Egypt<br>South Afr.<br>Tanz.<br>Zambia<br>Zimbabwe | Benin<br>Egypt<br>Kenya<br>South Afr.<br>Sudan<br>Tanz.<br>Zambia<br>Zimbabwe | Egypt<br>Mali<br>South Afr.<br>Tanz.<br>Uganda<br>Zambia<br>Zimbabwe | Burkina Faso<br>Egypt<br>Mali<br>South Africa<br>Tanz.<br>Uganda<br>Zambia<br>Zimbabwe | Burkina Faso<br>Egypt<br>Mali<br>Senegal<br>South Africa<br>Sudan<br>Tanz.<br>Uganda<br>Zambia<br>Zimbabwe |









There is a trend that the African labs are getting better and closer together





This lab improved strongly based on the CSITC support and RT evaluations



African Lab Evaluation Results in CSITC RT

Lab of the Bremen Cotton Exchange



It is clearly visible that the African labs are getting better





# **Best Practices Guideline**





#### Guideline for Commercial Standardized Instrument Testing of Cotton

#### ICAC Task Force on Commercial Standardization of Instrument Testing of Cotton

ITMF International Committee on Cotton Testing Methods

Editors:

- Drieling, Axel
- Gourlot, Jean-Paul
- Knowlton, James

Contributors:

- Axel Drieling, Faserinstitut Bremen e.V. (FIBRE), Bremen, Germany
- Jean-Paul Gourlot, CIRAD-LTC, Montpellier, France
- James Knowlton, USDA-AMS, Memphis, TN, USA.
- Lawrance Hunter, Nelson Mandela Metropolitan Univ., Port Elisabeth, South Africa
- Greg Parle, Auscott, Australia
- Mona Qaud, Rieter, Switzerland / ITMF ICCTM HVI Working Group
- Anja Schleth, Uster Inc., Knoxville, TN, USA.
- René van der Sluijs, CSIRO, Australia
- V. Srinivasan, Premier Evolvics, Coimbatore, India





- 2 versions
  - Full version with explanations, requirements, additional recommendations and more information (currently 30 pages)
  - Small version with requirements and few basic explanations only (currently 15 pages)
  - Both are edited similarly, and the extraction is done afterwards
- Current version available on csitc.org → Technical information → Public information
- Finished for approval before next CSITC meeting





- Planned timeline
  - Filling of all chapters July/August
  - Inclusion of comments / changes from contributors before CSITC TF in September – 1st final draft
  - Comments from CSITC TF in September
  - 2nd final draft October distributed to CSITC TF and ITMF ICCTM
  - Approval by CSITC TF in March 2012 (Bremen)
  - Approval by ITMF ICCTM in March 2012 (Bremen)