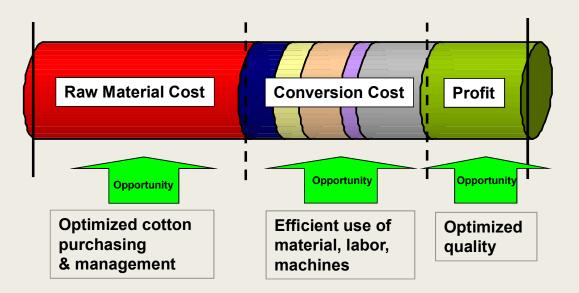
COTTON FIBER TESTING AND CSITC ROUND TRIAL

Hossein Ghorashi March 2018

Points of Consideration:

- Why should you own an instrument, if you don't already?
- Why is a round trial important, if you have an instrument and you do not participate?
- Are you taking full advantage of round trial data, if you own an instrument and participate in round trial?



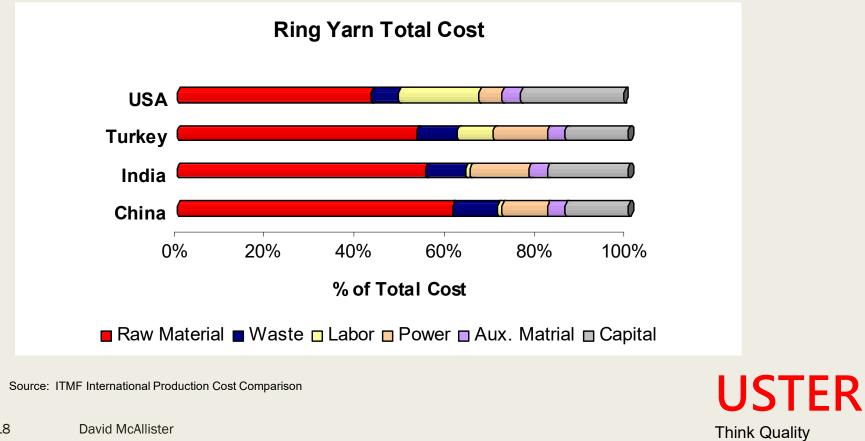
4/19/2018 Hossein Ghorashi

Cost drivers

Focus on where you have control

Breakdown of Yarn Cost/Pricing

Raw Material Waste Labor Pow er Aux. Matrial Capital Profit



4/19/2018

David McAllister

Comparing the world

Gain control over your cost

4/19/2018

Cotton fiber properties

Each spinning system has a priority

Fiber Properties Which Influence Yarn Processing		
Ring	Rotor	Air Jet
Length	Strength	Fineness
Length Uniformity	Fineness	Cleanliness
Strength	Length	Strength
Fineness	Length Uniformity	Length
	Cleanliness	Length Uniformity

4/19/2018 David McAllister

Raw material

Impact of fiber properties

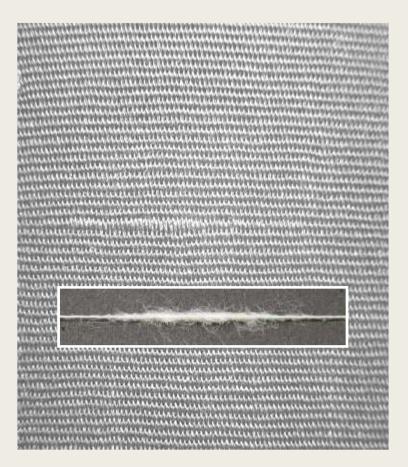
Fiber Properties & Processing Characteristics Affected		
HVI Fiber Property	Processing Characteristic Affected	
Strength	 Yarn and Fabric Strength End Breaks in Spinning and Weaving 	
Length	 Yarn and Fabric Fineness Yarn and Fabric Strength Nep Formation During Processing Formation of Pilling Yarn Evenness Yarn Imperfections 	
Length Uniformity/ Short Fiber	 Processing Waste End Breaks in Spinning Yarn Evenness Yarn Imperfections 	
Micronaire/Maturity	 Nep Formation During Processing White Specks/Shiny Neps Yarn & Fabric Strength Product Appearance Processing Waste End Breaks in Spinning 	
Trash Content	 >Processing Waste >Textile Machinery Contamination/ component wear >Disturbances/Stops in Knitting >Product Appearance >Cotton Dust Levels 	
Color	>Fabric Appearance (Barré)	
Neps	 >Fabric Neppiness >Waste >Weaving Efficiency 	
U.V. Fluorescence	>Fabric Appearance (Barré)	

4/19/2018

David McAllister

High raw material cost

- High raw material cost is the main cost in yarn manufacturing causing...
 - Low profitability
- The source of high raw material cost are many include...
 - Buying higher quality fiber than necessary to make up for lack of optimized processes
 - Lack of complete cotton quality data to make informed buying/pricing decisions
 - Poor mix/laydown management resulting in high variability in product quality and processing efficiency



4/19/2018

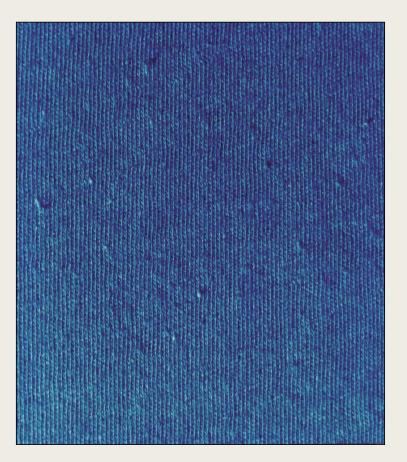
Thick and thin place defects in yarn

- Thick and thin places in yarn is one of the top quality pains for mills causing...
 - Off-quality yarn
 - Waste
 - Low profitability
- The source of thick and thin places in yarn are many and include...
 - High short fiber in raw material
 - High fiber micronaire in raw material
 - Poor management of cotton laydowns resulting in high variation within and between laydowns

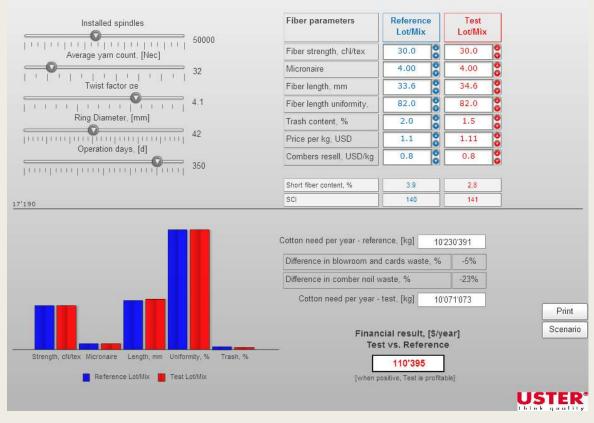
High end breaks in spinning and weaving

- High yarn end breaks in spinning and weaving is one of the top quality pains for mills causing...
 - Off-quality yarn
 - Waste
 - Low profitability
- The source of high yarn end breaks in spinning and weaving are many and include...
 - High short fiber content in raw material
 - High trash content in raw material
 - High micronaire variation in raw material
 - Low fiber strength in raw material
 - Poor management of cotton laydowns resulting in high variation within and between laydowns

Dyeing defects in fabric


- Dyeing defects in fabric is one of the top quality pains for mills causing...
 - Off-quality yarn
 - Waste
 - Low profitability
- The source of dyeing defects in fabric are many and include...
 - Low maturity in raw material
 - Variation in maturity in raw material
 - Variation in cotton color
 - Variation in U.V. fluorescence
 - Poor management of cotton laydowns resulting in high variation within and between laydowns

Nep defects in yarn


- Neps in yarn is one of the top quality pains for mills causing...
 - Off-quality yarn
 - Waste
 - Low profitability
- The source of neps in yarn are many and include...
 - High nep level in raw material

Case study

Reducing quality variability = \$110,395 savings/year

Financial impact of fiber properties

4/19/2018

David MCAllister

- Feedback data from round trials is a reference point for the instrument's performance
- Comparison of instrument's performance to other participants' in the trial is important, especially if the cotton is traded instrument measurements
- Detection of a problem on accuracy of your instrument before it impacts your operation can translates to savings

- Fiber testing instrument does not have to encounter obvious hardware/software malfunctions to produce wrong data
- In general, instruments are relatively smart using built-in thresholds and limits for various measurements
- They can detect a large number of failures and inform the operator
- To a great extent they compensate for changes in hardware thru software calibrations

However...

4/19/2018

Hossein Ghorashi

There are circumstances that instrument can be "fooled" in producing wrong data

Examples are:

- "Bad" calibration cottons, i.e. poor texture due to over use
- Scratches on color window
- Uncleaned color calibration tiles
- Drift in laboratory ambient conditions
- Brush and breaker jaws wear
- Changes in air flow can affect pneumatically driven components

Hossein Ghorashi March 2018

Example of an effective round trial:

USDA's internal "check test program "is a form of round trial, which has enabled them to insure the performance of over 200 HVIs with tight measurement tolerances

4/19/2018 Hossein Ghorashi

Important:

Instrument data can be precise but not necessarily accurate!

4/19/2018 Hossein Ghorashi

What can future hold?

- With increase in number of participants and support from instrument manufacturers feedback can be extended but not limited to:
 - alert manufacturer of potential problems
 - Online support and hotlines possibilities

Questions or Comments?

Thank you!

4/19/2018

Hossein Ghorashi